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1k ASSTRACT (Mazumum 400 words)

SOFIA, a camputer code for aeroelastic computations, was applied to predict the
rotor blade deformations due to unsteady airloads caused by BVI and to in-
vestigate appropriate control movements to minimize vibration and noise. The
camputation of the unsteady, camwpressible, inviscid flow about rotor-blades
uses an Euler CFD code, while a quasi one-dimensional structural solver is -

r used to campute the deformation of the rotor blades.
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1. Introduction

The prediction of rotor blade deformations due to unsteady airloads requires on one hand
the accurate treatment of the blade-vortex interaction and on the other hand the proper
computation of the elastic deformation of the blade.

In chapter 2 an overview of the actual structural data which will be used during the
remaining research project is included. Chapter 3 deals mainly with the verification of the
CFD code. A comparison of experimental data obtained at NASA Ames 80 by 120 Foot
Wind Tunnel with results from the Euler code is given. Chapter 5 summarizes the
remaining research programme.

2. Verification of the structural data and validation of the structural model

In addition to solving the structural differential equations using a characteristic method /1/
a FEM method has been developed based on TIMOSHENKO and FLUGGE theory also.
Various comparisons have been carried out to validate the mathod (see Figurel). In Figure
1 deviations of the EULER-BERNOULLI theory from TIMOSHENKO-FLUGGE beam
theory are obvious, especially at higher harmonics.

During the first period of the research programme an investigation concerning the material
properties of the rotor blade was carried out. Experimental data from MBB, FEM
computations of other authors and our own results has been reviewed. The relevant material
properties of a BO105 blade like density, stiffnesses (torsional, bending), moments of
inertia as well as center of gravity, elastic center and bending center is now available at the
institute and will be included in the final report. The stress wave velocities follow
immediately from the above mentioned data.

3. Verification of the CFD code

An experimental study of rotor blade-vortex interaction (BVI) aerodynamics and acoustics
was carried out by F.X. Caradonna /2/ at NASA Ames. The vortex was generated
externally and interacts with the two-bladed rotor at zero thrust. During the BVI several
propagative and convective events occur and the ability to predict these events is a good
accuracy test for a CFD method. Figure 2 shows the experimental blade pressure variations
induced by BVI and the comparison with our computations. The results are very promising
and all the important flow features especially the "trailing edge wave" (our terminology) or
"secondary BVI wave” (Caradonna s terminology) are captured.

Two-dimensional investigations have been performed to study various parameters (e.g.
center of elasticity, stiffness, etc.). Figures 3 show some typical results. The whole
unsteady data have been analyzed and put on video. The acoustic wave propagation
phenomena are enlightend and the effect of the elastic deformation on the transient pressure
field can be seen.

/1/ S. Schlechtriem, D. Nellessen, J. Ballmann: “Elastic Deformation of a Rotor Blade
Due to BVI", paper presented at the 19th European Rotorcraft Forum, 1993, Paper
No. Bl

72/ C. Kitaplioglu, F.X. Caradonna: "Aerodynamics and Acoustics of Blade-Vortex
Interaction Using an Independently Generated Vortex", paper presented at the
American Helicopter Aeromechanics Specialists Conference, San Francisco, 1994
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4, Statement of further research plans

The remaining research programme covers the investigation of appropriate active control
movements and the quantitative determination of the influence of the elastic deformation on
the aerodynamic loads. Therefore the work to be done focuses now on the three-
dimensional calculation of a blade-vortex interaction. Figure 4 shows the pressure
distribution about a rotor blade at a tip Mach number of 0.8.

5. Papers submitted for publication
S. Schiechtriem, D. Nellessen, J. Ballmann: "A Numerical Investigation of the Influence of

Active Control Movements on Vibration and BVI-Noise”, a proposed paper for the 20th
European Rotorcraft Forum

2.50E+10
—— x
2.00E+ 10 | —- 1
I =17
2,
wixly) L]
1.50€+10 -}
FEM 50
-------- FEM 100
1.00E1 10 | ~——" Timoshenko {snalytisch)
s Euter fanalytisch)
5.00E+09 |
0.00€ + 00 1 t ! :
0 1 2 3 4 5 8 Y 8 ? "

Fig. 1. Comparison between Timoshenko-Fliigge und Euler-Bernoulli theory,
Validation of new one-dimensional structural analysis code (ODISA)
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Fig. 2: Comparison of Caradonna ‘s experiments with Euler computations (parallel BVT)




Fig.2a: Typical results of a BVI computation (rigid versus flexible blade, 1DOF:

plunge)
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